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Abstract: In this paper we examine theoretically the chiral discrimination of molecules with a single chiral center. We 
propose a definition of the chiral discrimination parameter A in terms of the difference between the second virial 
coefficient of pure enantiomers and their racemic mixture. This parameter enters in the equation of state of racemic 
mixtures and will determine their phase diagrams. We calculate then the chiral discrimination between D- and L-alanine 
using a Monte Carlo simulation to average over 11 molecular degrees of freedom at fixed intermolecular distances using 
the CHARMM energy function. The discrimination is found to slightly favor homochirality and mainly comes from 
steric hindrance at short distances. We also perform a direct integration for rigid chiral tetrahedron-shaped molecules. 
Here there are only five rotational degrees of freedom. For a Lennard-Jones potential, the overall chiral discrimination 
is found to be predominantly heterochiral. One of our main observations is that the pair free energy, internal energy, 
and entropy differences between the two enantiomers may change signs as a function of the interpair distance. We 
find that homochirality is preferred at shorter distances whereas heterochirality is favored at larger distances. With 
our model molecules a strong chiral discrimination of about 43% is found. The calculation is repeated for molecules 
that are restricted to lie at the water/air interface. Those model molecules can be regarded as tripodal amphiphiles 
creating a chiral Langmuir monolayer at the water/air interface. Here the chiral discrimination is found to be smaller 
(about 8.8%) but still significantly heterochiral. 

I. Introduction 

Although the concept of chirality in organic molecules such 
as proteins, sugars, lipids, etc. was recognized by Pasteur,1 Le 
Bel,2 and van't Hoff3 over a century ago as a consequence of the 
asymmetrical nature of tetravalent carbon, it still remains a 
fascinating area of current research.4"9 One of the simplest chiral 
molecules which can be considered is a carbon sitting at the origin 
of a tetrahedron and covalently connected to four different groups. 
Two distinct stereomers can be formed by reordering the four 
groups. Those are the two enantiomers, D and L, of the chiral 
molecule, and as can be seen in Figure 1, one is the mirror image 
of the other. 

Although chirality has such a fundamental importance in 
organic chemistry and biology, its origin is far from being well 
understood. Practically, it is of great importance to understand 
what causes some enantiomeric liquid mixtures to crystallize as 
conglomerates (i.e., a mixture of crystals of the two pure 
enantiomers), while others as racemic compounds (called some­
times "true racemates") which are true homogeneous crystals of 
the two enantiomers.4'9 On a microscopic level, one can distinguish 
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Figure 1. Simple molecule with a single chiral center represented as a 
tetrahedron. Four groups, A, M, CA, and H, are connected to the chiral 
center at the origin Ca. The two chiralities are denoted by D and L. In 
A we show the D-L pair at a distance R, and in B the D-D pair. 

between two cases. In the first, the interaction between a pair 
of the same enantiomers, D-D (or L-L) , is more preferable than 
that of the mixed pair, D-L. This preference is called homo­
chirality. In the second case, the preference is for the D-L pair 
and is called heterochirality. The difference in the interaction 
energies of the D-D (or L-L) and D-L pairs known as the chiral 
discrimination is the main factor determining how a liquid racemic 
mixture of D and L will crystallize. 
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Several attempts have been made to study the discriminating 
forces between chiral molecules. For instance, Craig,10 Schipper,1 • 
and co-workers used multipole expansions and found a very rapid 
decay of the chiral forces for quadrupoles and higher multipoles. 
Both pure electrostatic and dispersion (van der Waals) forces 
have been investigated. 

A different approach was used by Salem et al.n Interaction 
energies were calculated between two model chiral tetrahedra. 
In the freely rotating limit (infinite temperature) they showed 
that chiral discrimination cannot exist if only two-body interactions 
are considered. Weak discrimination was found using six-body 
or higher order interactions. At finite temperatures (using 
Boltzmann weighted averaging) and for pure electrostatic 
interactions, they found a very small discrimination. However, 
their numerical procedure did not converge well for the shorter 
intermolecular distances where the discrimination is more 
significant. 

In a different work,13'14 significant chiral discrimination was 
found for tripodal-shaped molecules which can be thought of as 
a model for amphiphiles creating a chiral Langmuir monolayer. 
There, Boltzmann weighted averaging at finite temperatures 
yielded a discrimination for various types of two-body interac­
tions: van der Waals, charges, and dipoles. One of the striking 
results obtained is that van der Waals interactions between tripodal 
molecules tend to favor heterochirality whereas, in some cases, 
electrostatic interactions favor homochirality. However, this 
particular model averages only over nine discrete back-to-back 
intermolecular rotations instead of doing the full integration over 
the angular-phase space. 

The aim of the present work is to elucidate even further the 
origin of chiral discrimination. In section II, we conveniently 
define the chiral discrimination parameter and its connection 
to molecular interactions and thermodynamics of racemic 
mixtures. In view of recent success in simulating complex 
molecules using standard two-body force fields15-18 like 
CHARMM, AMBER, and OPLS, we have calculated the chiral 
discrimination between L- and D-alanine (section III) using Monte 
Carlo simulation. However, due to ever-present stochastic errors 
even in very large computer runs and the small discrimination in 
alanine, we have also performed numerical integrations over the 
rotational degrees of freedom (with the correct Boltzmann weight 
at finite temperature) on model molecules interacting via a two-
body Lennard-Jones potential. In section IV, we present results 
for tetrahedral model molecules in solution (three-dimensional 
system), and in section V, we repeat the calculations for the same 
molecules but with an additional constraint that three molecular 
groups are restricted to lie on a plane. This system can be thought 
of as a model for a chiral Langmuir monolayer. In both two and 
three dimensions, a substantial chiral discrimination was obtained. 
Finally, some concluding remarks are presented in section VI. 

II. Chiral Discrimination and Thermodynamics of Racemic 
Mixtures 

Consider a system of ./V molecules, each consisting of n atoms. 
By denoting Rt the distance to the center of mass of the ith molecule 
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and fj' the relative distance of the/'th atom of the rth molecule 
from its center of mass R1, the partition function Z of the system 
reads 

z=/n^n^n*^ «* w t z 
" f - i j - \ <•=! ; - i '= ' isT<7sB 

MV-*/)-/» L E !>«<*/-V V-'/)] (i) 
l<i<J<N t -1 7^1 

where @ = 1 /k$T, Tis the temperature, and ks is the Boltzmann 
constant. The first (second) term in the exponent denotes 
intramolecular (intermolecular) interactions. The interaction 
potential Vki(f) is the two-body interaction of atom (or group) k 
with atom (or group) / at a distance r, and the B functions enforce 
the constrains that each R1 is the center of mass of the i'th molecule. 

Performing a straightforward virial expansion to second order,19 

the free energy F and pressure P read 

-PF = N\ogQ + N log Z1 +
 1I1Np-^1 

and 

l » - P * B ^ l - f ^ ) (2) 

where Q is the volume of the system and the molecular density 
P = NfQ. The intramolecular (single molecule) partition function 
Zi and its corresponding free energy f\ are defined as 

n n 

z, = o"-' MP(HS/,) = STI&J i(jyj) 

«p[-0 E "dh-h)) (3) 
\<k<l<n 

and are independent of the center of mass position R. Similarly, 
the two-molecule partition function Z2 depends only on the center-
to-center intermolecular distance, R = R\ - R2. 

j=i j=i J=* j-i 

exp(-/J Y lOjkVj-V +"JkPj-W]) * 
1 </<£<« 

n n 

(expHJ £ £ V ; - * - V)] " 1) (4) 
J-I k-\ 

By denoting the free energy of a pair of molecules at distance 
R ZSf2(R), and similarly U2(R) the internal energy and S2(R) 
the entropy, we have 

f2(R) = U2(R) - TS2(R) (5) 

and 

| | = JdR («ph8(/i(*) -/iC+00))] - D (6) 

where at infinite separation there are no intermolecular contri­
butions to the pair free energy and the only contribution to 
/2(+0°) comes from the two intramolecular ones,/2(+°°) = 2/i. 

Thus, the virial expansion for the pressure can be rewritten as 

P = pkBT(\+ B2(T)P + ...) (1) 

where B2(T) is the second virial coefficient given by eq 6. 

(19) Hansen, J.-P.; McDonald, I. R. Theory of Simple Liquids, 2nd ed.; 
Academic Press: New York, 1986. 
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B2[T)=-^1 = y<iRb2(T,R) (8) 

The above equation of state can be generalized to a racemic 
mixture having a molar fraction x of the D enantiomer and 
1 - x of the L enantiomer. 

P = pkBT[l + pB2
m + 2px(l - x)(B2

0L -B2
m) + ...] (9) 

where p is the total molecular density. All quantities belonging 
to the pair D-L (heterochiral) are denoted by DL and all those of 
the homochiral case (the pair D-D) by DD. Note that from 
symmetry B2

DD = B2
LL and B2

DL = B2
1-0. 

A chiral discrimination parameter, A, can be conveniently 
defined as the relative difference between the two virial coefficients 
S2

DD and B2
01-

B2
OL(T)-B2

m(T) 
A- ^ n <10) 

and the equation of state for the mixture reads 

P = pkBT{\ + pB2
DD[l + 2 x ( l - J c ) A ] + ...) (11) 

This single parameter A encapsulates the difference in interaction 
for the D and L enantiomers averaged over the intermolecular 
distances and takes into account the correct Boltzmann weight 
at temperature T. For example, if P\ is the pressure of the 
enantiomeric substance and PR of the racemate (x = 0.5) then 

/ W A _ P * 2 D D
A 

pkBT 2 

The above treatment can be generalized to ternary solutions 
of the D and L enantiomers and a solvent. Then, the difference 
in pressures in eq 11 translates into a difference in osmotic 
pressures. As long as the solvent is achiral, it will change the 
evaluation of both B2

m and B2
01- in a similar way. Generalizations 

to chiral solvents14-20 or to interactions with a chiral substrate21-23 

are also possible. 
Note that, in the infinite temperature limit, A reduces to zero 

for any two-body interactions since 

JdR (U2
DL{R) - U2

DD(R)) 
A = H m = 0 (12) 

T~" JdR U™(R) 

This agrees with the observation of Salem et al.n that only six-
body or higher order interactions will give rise to nonzero A at 
the infinite temperature (freely rotating) limit. 

With this definition of A (keeping in mind that B2 is negative 
for attractive interactions like Lennard-Jones potentials), a positive 
A means that heterochiral interactions (HEC) are favored with 
respect to homochiral ones; A = 0 is the case of no discrimination, 
and A < 0 is the preferred homochiral case (HOC). These general 
considerations are applied in the following sections where Monte 
Carlo simulations are presented for alanine molecules (section 
III) and tetrahedral model molecules in sections IV and V. 

III. Chiral Discrimination in Alanine 

Alanine is the simplest chiral amino acid constituting proteins. 
Its chemical formula is given by 

(20) Schipper, P. E.; Harrowell, P. R. J. Am. Chem. Soc. 1983,105, 723. 
(21) Lipkowitz, K.; Demeter, D. A.; Zegarra, R.; Larter, R.; Darden, T. 

J. Am. Chem. Soc. 1988, 110, 3446. 
(22) Joshi, V.; Kotkar, D.; Ghosh, P. K. /. Am. Chem. Soc. 1986, 108, 

4650. 
(23) Jug, A. C. R. Acad. Sd., Ser. 2 1986, 303, 1773. 
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Table I. Partial Charge, qi, and Lennard-Jones Potential 
Parameters <r, and e,- As Given by the CHARMM Potential (Eqs 13 
and 14) for an Alanine Molecule" 

atom 

N 
H 
H 
H 
C 
H 
C 
H 
H 
H 
C 
O 
O 

group 

NH3 
NH3 
NH3 
NH3 
Ca 
H 
CH3 
CH3 
CH3 
CH3 
COO 
COO 
COO 

%b 

0.0 
+0.33 
+0.33 
+0.33 
-0.1 
+0.1 
-0.3 
+0.1 
+0.1 
+0.1 

0.0 
-0.5 
-0.5 

C1' 

1.6 
0.6 
0.6 
0.6 
1.8 
1.47 
1.8 
1.47 
1.47 
1.47 
1.8 
1.6 
1.6 

Md 

-0.2384 
-0.0498 
-0.0498 
-0.0498 
-0.0903 
-0.0045 
-0.0903 
-0.0045 
-0.0045 
-0.0045 
-0.0903 
-0.6469 
-0.6469 

" The first four atoms form the amine (NH3) group, the next one the 
asymmetric Ca carbon, then the single H, the four atoms of the methyl 
group (CH3), and the three of the carboxylic acid group (COO). b Partial 
charges in units of electron charge.c Distances in A. * Energies in kcal/ 
mol. 

NH 3 -HC 0 CH 3 -COO 

where we use the zwitterionic form of the alanine molecule, 
appropriate to describe alanine molecules in a polar solvent 
(aqueous solution). The Ca is an asymmetric carbon and occurs 
in proteins only in the left-handed chirality (L-alanine). However, 
it is possible to synthesize both enantiomers (L- and D-alanine). 
Since all covalent bonds and valence angles can be taken (to a 
good approximation) to be frozen about their average values, the 
only remaining intramolecular degrees of freedom are the torsional 
ones. In order to compute the chiral discrimination between the 
two enantiomers of alanine, we used the CHARMM all-atom 
energy function:15"18 

E = £ ^ [ 1 + C O S ( B * - J ) ] + 
dihedrals 

where all distances are given in A, angles in rad, and energies in 
kcal/mol (at 300 K, kBTis given by 0.595 kcal/mol). The first 
sum in eq 13 is over the dihedrals and represents the total torsional 
energy of the alanine molecule with torsion coefficients k^, 4> (the 
usual dihedral angle), n (the rotation symmetry), and 5 (a phase 
shift). 

The second term is a Lennard-Jones potential summed over 
all nonbonded pairs (ij) of atoms at distance ?•<,. It represents 
both short-distance steric repulsion and large-distance attraction. 
For each pair (ij), the two parameters ey and ay characterizing 
the energy scale and radius of the interaction, respectively, are 
defined as 

and 

^ - 2 - " V , + ',) (14) 

where tt and <r,- are the conventional 12:6 Lennard-Jones 
parameters for any of the types of atoms of alanine. The last 
term is the direct electrostatic interaction, qt, being the partial 
charge of the /th atom (in units of electron charge) as defined 
by CHARMM. The relative dielectric permittivity, er, is set to 
tr = 80 in the following, assuming that the solvent is water. 

The interaction energy (intermolecular) is made up of only the 
last two terms: Lennard-Jones and electrostatic. The values of 
the parameters used in the alanine simulation are listed in Table 
I. Altogether we integrate over 11 degrees of freedom: three 
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Figure 2. Averaged internal energy CZ2 as computed from Monte Carlo 
simulations of D-D and D-L pairs of alanine molecules as a function of 
the distance R between the two nitrogens (measured in A). The D-D data 
points are represented by the full squares and are connected by a dotted 
line, whereas those of the D-L data points are represented by full triangles 
and are connected by a dashed line. The averaging over all allowed 
configurations is done with the proper Boltzmann weight. All energies 
are measured in kJ/mol, and the temperature is set to T = 200 K. All 
other parameters are given in Table I. The errors bars are obtained by 
averaging over five independent runs. The horizontal dotted-dashed line 
indicates the value of [Z2 at infinite separation. A small HOC chiral 
discrimination can be seen at short distances (<2.7 A). 

internal rotations for each alanine (accounting for the torsion) 
and five relative angles for the intermolecular rotations. 

The pair partition function, Z2, defined in eq 4 is used to compute 
the pair internal energy C72(./?) (eqs 4-6) using the so-called Monte 
Carlo growth method described in detail in ref 24. The 
calculations are repeated for the two pairs of alanine, D-D and 
D-L, as a function of the intermolecular distance R taken to be 
the distance between the two nitrogens. The distance was varied 
between 2.3 and 7 A. In addition, the point of infinite separation 
was calculated. Five independent runs of 20 000 Boltzmann 
weighted configurations were generated and used to obtain 
averages. The Monte Carlo runs have been carried out on a Cray 
2 supercomputer. Each independent run took about 10 min of 
CPU. The total CPU time used to study chiral discrimination 
in alanine was about 40 h. 

The results are shown in Figures 2 and 3 for two temperatures, 
T = 200 and 300 K, respectively. As expected for both D-D and 
D-L, Ui has a repulsive core at short distances (<2.4 A), followed 
by a potential well at intermediate distances and an attractive 
tail at large distances. The point of infinite separation appears 
as a dotted-dashed line in the figures. Although there is a small 
chiral discrimination (favoring homochirality), especially at T = 
200 K and small R, it lies within our stochastic error bars. Our 
calculations, which give reasonable precision for the individual 
thermodynamical quantities (free energy, internal energy, and 
entropy) of each pair, are not precise enough to yield reliable 
measure of the chiral discrimination. This should not come as 
a total surprise since the chiral discrimination is expected to be 
quite small compared with the average quantities. 

We have also repeated the Monte Carlo runs for a different 
form (not zwitterionic) of alanine at T = 200 and 300 K. This 
is the form more appropriate for alanine molecules in the vacuum 
(er = 1) compared to the zwitterionic form which is valid in 
solution. This form does not have partial charges on the amine 
and carboxyl groups and is also the form used in simulations of 
peptides. Although the pair interaction is very different when 
compared with the zwitterionic case due to a smaller contribution 

(24) (a) Garel, T.; Orland, H. J. Phys. A 1990, 23, L621. (b) Garel, T.; 
Niel, J.-C; Orland, H.; Velikson, B. J. Chim. Phys. Phys.-Chim. Biol. 1991, 
8«, 2473. 

2 4 6 8 
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Figure 3. Averaged internal energy JZ2 as computed from Monte Carlo 
simulations of pairs of D~D and D-L alanine molecules. The temperature 
is set to T = 300 K. All other parameters and notations are the same 
as in Figure 2 (see also Table I). No conclusive chiral discrimination 
beyond the error bars can be seen at this temperature. 

from the electrostatic interactions, the chiral discrimination could 
not have been resolved here as well. It lies within the stochastic 
error bars just like in Figures 2 and 3. 

We have chosen alanine because it is the simplest chiral amino 
acid and one of the simpest chiral molecules altogether. However, 
it seems that the chiral discrimination for alanine is just too small 
to be measured in computer simulations. Since our simulations 
were carried out on a large-scale supercomputer and were quite 
extensive, we do not believe that they can be improved substantially 
with current state-of-the-art computers. Also, the uncertainities 
in the definition of the various energy constants in CHARMM 
can cause large deviations in such small chiral discriminations. 
It would be interesting to perform similar calculations on different 
(more complicated) chiral molecules for which the chiral 
discrimination is known to be sizable. 

Another approach which we employed successfully is to try to 
reduce even further the number of degrees of freedom, the main 
goal being the feasibility of numerical integration of the two-
body partition function, which is impractical even for 11 degrees 
of freedom of pairs of alanine. In the next sections we describe 
such a procedure for rigid tetrahedra serving as model chiral 
molecules. 

IV. Chiral Discrimination for Model Molecules 

In order to reduce the number of degrees of freedom while 
preserving the chiral nature of alanine, we replaced each rotating 
group of the alanine (amine (NH3), methyl (CH3), and carboxylic 
acid (COO)) by a single fictitious spherical particle. The resulting 
molecule consisted of a Ca carbon sitting in the center of a rigid 
tetrahedron and four "particles" sitting on the four vertices: 
particle A representing the amine group, M the methyl, CA the 
acid group, and H the remaining single hydrogen. Although our 
starting point is a simplified model for alanine molecules, we 
model qualitatively in this section any chiral molecule with a 
single chiral center. 

Each tetrahedron represents a chiral molecule as long as the 
four vertices are different one from another (Figure 1). Since 
it is a rigid body, the only degrees of freedom left are rotations 
of the entire tetrahedron with respect to its central Ca carbon. 
As can be seen in Figure 1, there are only two possible isomers, 
D and L, of the tetrahedron related by permutations of any pair 
of vertices. Those are the two chiral enantiomers. 

Only the last two terms of eq 13 account for the energy function 
since there is no torsion energy for rigid bodies. Furthermore, 
for convenience, we set all partial charges, qt, equal to zero and 
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Table II. Parameters for the Model Tetrahedral Molecules 
Interacting via Pure Lennard-Jones Potential" 

group bond length* to C„ 

C„ 
A 
M 
CA 
H 

0.0 
2.25 
1.5 
3.0 
0.75 

1.8 
2.0 
1.6 
3.2 
0.8 

-0.1 
-0.35 
-1.5 
-0.5 
-0.05 

" The Ca is the central asymmetric carbon. The four groups A, M, 
CA, and H model the amine, methyl, carboxylic acid, and hydrogen 
groups of alanine, respectively. They sit at the vertices of the tetrahedron 
as is illustrated in Figure 1. * Distances in A.c Energies in kj/mol. 

leave only the Lennard-Jones interactions. In a more refined 
calculation, one should include charges and direct dipole-dipole 
(or higher multipole) interactions since the Lennard-Jones 
potential accounts only for induced dipoles. Thus, the parameters 
defining the tetrahedron molecule are the e's and <r's for each one 
of the five groups (central Ca and the four vertices: A, M, CA, 
and H). In addition, we need to specify the four rigid bond 
lengths: C0-A, C0-M, C0-CA, and C0-H. All these parameters 
are listed in Table II and completely specify our model molecule. 
As was mentioned above, the specific values are representative 
but have been chosen to make the model molecule quite 
asymmetric and to increase the chiral discrimination. The four 
valence angles of the central Ca carbon are taken to be equal to 
the standard value, arccos(-73) =» 109.47°. 

At a given intermolecular distance (center-to-center), we 
calculate the intermolecular interaction energies between the 25 
pairs of groups (five on each of the tetrahedra). In order to sum 
over all possible relative rotations of the D-D and D-L pairs of 
molecules, we fixed one tetrahedron with a frozen orientation so 
that its C0 group is at the origin and used five angles to describe 
the rotational degrees of freedom of the second tetrahedron: three 
are the Euler angles of rotation of the second tetrahedron about 
its center (xi, X2. and X3)> while the others are the two polar 
angles 8 and </> parametrizing the position of the center of the 
second tetrahedron with respect to the first. The angles 0 and 
Xi vary between 0 and it, while all others between 0 and 2T. This 
procedure ensures that we sum over all relative orientations of 
the two tetrahedra while keeping their center-to-center distance 
fixed. 

The numerical integration is performed by discretizing the 
five-dimensional angular space using the Simpson integration 
method, with N + 1 points for 0 and X2> and 2N + 1 for xi, X3> 
and <f>. The total number of points for the five-dimensional 
integration is thus (2N + l)3(N + I)2. Convergence of the 
integration was checked by calculating the free energy and internal 
energy,successively,withJV= 8,10,12,14,and 16. Convergence 
was better than one part in 104 for Â  = 16 (approximately 107 

points of integration). 
In Figure 4 we present f2(R), U1(R), and S2(R) at T = 300 

K for distances ranging from 2 to 14 A for both the D-D and D-L 
pairs. At short distances (<4 A) the D-D pair is favored (HOC), 
whereas at intermediate distances the D-L one is favored (HEC). 
At large distances (>10 A), as expected, they converge to the 
same value, which is the entropy of rotation: /2(0O = -TS2(^) 
= 2/]. These results indicate that the steric hindrance favors 
HOC, whereas HEC is favored energetically at larger distances 
(in the attractive region of the potential). This is a nontrivial 
result since it shows that simple-minded models of geometrical 
packing of D and L molecules are not completely suited to deduce 
the overall chiral discrimination. Indeed, discrimination in the 
attractive range of the potential (intermediate distances) may 
also play a crucial role. 

In Figure 5, the integrand of B2(T)/2T (as defined in eq 8), 
b2(T,R)R2, is plotted as a function of the inter-pair distance R. 
The important features of the chiral discrimination at different 
distances can be seen. At short distances, the large discrimination 

S 

20 

0 

20 

-

-

-

-

• 
; 
: + 

I 

I 
I 

) 

i 
V: 

-H-. 
l -W*5* 

>w . * • " " ' 

I ' ' 

. DD 
* DL 

. * * ™ 

& 

-

-

. 

-

R[A] 
10 15 

Q) 

O 

S 
• - 3 

X 
I — I 

CJ 

p 

?n 

10 

n 

- 1 0 

- 2 0 

1 

-

-
, 

~ 

W 

f 

: I 

; \ 
; i 
; i 

• _ ' , 

: I 

• ' 
• 

I 

• ' 

\ \ .* 

, , , 

1 

• / 

/ 

_._ 

W 

' 

_._ 

, • * - " 

. -

. DD 
- DL 

--

" 

. 
_ 
" 

^ 
" 

" 

-" 

" 

5 10 
R[A] 

15 

CD 

6 
\ 
•-5 

W 

t i 

i - j _ ^ -

. DD 
- DL 

• f/ 
: u 
: t 

c -

— 

-

-

: 

R[A] 
10 15 

Figure 4. Pair free energy, J2, internal energy, U2, and entropy, S2 (in 
units of kj/mol), as functions of the inter-pair distance J? (in units of A) 
plotted in A, B, and C, respectively. All data points for the D-D pair are 
marked by full squares, those for the D-L pair by full triangles. The 
averages are performed using the proper Boltzmann weight and averaging 
over all possible rotations in three dimensions, while keeping R fixed for 
each data point. The temperature is set to T = 300 K. The values of 
geometrical and interaction parameters are given in Table II. Note the 
deeper minima off2

DL (at R = 5 A) and U2
DL (at R = 4 A) as compared 

with their D-D counterparts, as well as their steeper rise at short distances 
due to steric hindrance. The horizontal dotted-dashed lines denote the 
values at infinite separation. 

present in the free energy is strongly suppressed by the exponential 
weight, whereas in the intermediate range around the potential 
minimum («5 A), it is significant. The value of the chiral 
discrimination A = 0.43 is obtained by integrating over the 
intermolecular distance, as is apparent from eq 8. Since A > 0, 
it indicates an overall HEC tendency in our model (with Lennard-



Chiral Discrimination 

3000 

N 2000 

K 
H 

CM 
. Q 

1000 

0 

— ' 

-

; 

, 

A 
I 
I 
! 
I 
I 

I 
1 I 

T/ 
I* / 

,•i 

/ i 

/ A 

i 

1 ' ' ' ' 
M 

/ 1 
\ 
A 

I 
I 
1 
1 \ 

I 

I 

• ' 

• \ 

I I I 

( I I I I _ 

. DD 
A DL 

-

: 

-

-
-

-

I , I I 

J. Am. Chem. Soc, Vol. 115, No. 26, 1993 12327 

A A 

R [A] 
10 15 

Figure 5. Integrand of the second virial coefficient, b2(T,R)R2 in 3D, 
as a function of the inter-pair distance R. Notations are the same as in 
Figure 4. Note the crossover between a HOC behavior below 4 A to a 
HEC one above 4 A. The difference between the areas under the two 
curves is proportional to the chiral discrimination parameter A. It is 
clear that HEC is preferred due to the bigger area centered at the (deeper) 
minimum of the D-L free energy at R = 5 A. 

Jones potential), although this tendency is contrary to the HOC 
behavior at very short distances due to steric hindrance. 

Our results should be compared with those of Salem et al.u 

In both works, the chiral molecules used are rigid tetrahedra 
having five degrees of freedom of relative rotations. In the freely 
rotating limit (no Boltzmann weight averaging), Salem et al. 
introduced rather complicated multibody interactions in order to 
obtain a nonzero chiral discrimination. However, their calculated 
chiral discrimination was very small even at short distances. They 
also performed a calculation at finite temperature and calculated 
Ui(R) for the D-D and D-L pairs, assigning partial charges to the 
four vertices and tracing over the electrostatic interactions. The 
numerical averaging (integration) did not fully converge for the 
shorter distances. In all cases their difference in the calculated 
internal energies was never more than one part in 103 of the 
averaged internal energy. 

One of the major ways we increased substantially the chiral 
discrimination was to introduce an additional asymmetry in the 
C„ bond lengths (in ref 12, the tetrahedra were all of equal bond 
length). We find it to enhance quite dramatically the chiral 
discrimination, and we think that this is a real effect that combines 
an asymmetry in the molecular shape with asymmetric interactions 
to produce a large chiral discrimination. Whereas the largest 
value of the relative internal energy difference found in ref 12 
was 10-3 (T = 300 K), we found values up to 1(K 

In addition, the number of points used in our five-dimensional 
integration is up to 10 times larger25 than in ref 12. This ensured 
us of good convergence even for the shortest distances. We note 
that with the Lennard-Jones potentials the convergence was even 
better than with longer range electrostatic interactions. This is 
due partially to poor convergence of the electrostatic sums because 
of canceling effects of positively and negatively charged groups 
in neutral molecules. 

Finally, we do not think that defining the chiral discrimination 
as the difference in internal energies U2

DD(R) - U2
0HR) at a 

given distance R will yield a reliable measure of the overall 
discrimination. As can be seen in our results, this definition is 
somewhat ambiguous. The geometrical steric repulsion and the 
attractive interactions at a larger distance may compete and lead 
to opposing effects at different intermolecular distances. On the 
other hand, A, as defined in our eq 10 above, averages correctly 
over the different distances. 

(25) Note that the definition of N in in ref 12 is larger than ours by a factor 
of 2. 

Figure 6. Pair of D-L plotted in A and D-D in B. The three groups are 
denoted by A, M, and CA. Rotations of the two molecules are restricted 
to a two-dimensional plane. The two enantiomers, D and L, are related 
by any pair permutation of the three groups A, M, and CA. This model 
molecule can be viewed as the basal plane of a tripodal chiral molecule 
where the fourth group points always perpendicular to the plane and does 
not contribute to the chiral discrimination. 

V. Chiral Discrimination in Langmuir Monolayers 

The results of the previous section can also be applied to the 
special situation of a chiral molecule with three anchoring points 
bounded on a two-dimensional plane.13_14,26 We use here ideas 
developed by Andelman and de Gennes13,14 about chiral am-
phiphiles forming a Langmuir monolayer. Equivalently, this can 
model physioadsorption on a solid substrate where the molecules 
have a degree of freedom of lateral diffusing in the plane.21-23 

Consider a tetrahedron where the only allowed rotations are 
those where the three groups A, M, and CA are required to stay 
on a two-dimensional plane (see Figure 6). We can think of this 
tetrahedron as a tripod amphiphile. The central carbon C0 is 
attached to three groups that lie at the water/air interface and 
to a fourth group which is an aliphatic tail pointing away from 
the interface into the air. This type of molecules can be produced, 
for example, by replacing the single hydrogen of the alanine by 
an aliphatic tail.27 If the tail is long enough, the resulting molecule 
will form an insoluble monolayer at the water/air interface, 
namely, a Langmuir monolayer. Since the tail does not contribute 
to the chiral discrimination (in this special case of tripodal 
molecules), we do not include its contribution to the intermolecular 
interactions. 

The advantage of studying monolayers is that the geometry is 
simpler and one might hope to understand better the chiral 
discrimination. Another advantage is that it is easy to control 
the surface pressure in a Langmuir trough and to use other 
techniques like epifluorescence microscopy28'29 to observed for­
mation of chiral domains. 

There are several studies of racemic mixtures of amphiphiles 
at the water/air interface.30-38 However, most of the molecules 
studied are more complicated than a simple tripod (e.g., two 

(26) For a general discussion of three-point attachment in biology, see: (a) 
Bentley, R. Nature 1978, 276, 673. (b) Bentley, R. Trans. N. Y. Acad. Sci. 
1983, 41, 1. 

(27) Wolf, S. G.; Leiserowitz, L.; Lahav, M.; Deutsch, M.; Kjaer, K.; 
Als-Nielsen, J. Nature 1987, 325, 63. 

(28) (a) Weis, R. M.; McConnell, H. M. Nature 1984,310,47. (b) Weis, 
R. M.; McConnell, H. M. J. Phys. Chem. 1985, 89, 4453. 

(29) (a) Heckl, W. M.; Mohwald, H. Ber. Bunsen-Ges. Phys. Chem. 1986, 
90, 1159. (b) Heckl, W. M.; Losche, M.; Cadenhead, D. A.; M6hwald, H. 
Biophys.J. 1986, /¥ ,11 . 

(30) Zeelen, F. J. Doctoral Thesis, State University of Leiden, The 
Netherlands, 1956 (unpublished). 

(31) (a) Arnett, E. M.; Chao, J.; Kinzig, B. J.; Stewart, M. V.; Thompson, 
O. J. Am. Chem. Soc. 1978,100, 5575. (b) Arnett, E. M.; Chao, J.; Kinzig, 
B. J.; Stewart, M. V.; Thomspon, 0.; Verbiar, R. J. Ibid. 1982, 104, 389. 
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Table III. Parameters for the Model Tripodal Molecules Interacting 
via a Pure Lennard-Jones Potential" 

group 

C0 

A 
M 
CA 

bond length* to C0 

0.0 
2.25 
1.5 
3.0 

CT* 

1.8 
2.0 
1.6 
3.2 

(c 

-0.1 
-0.35 
-1.5 
-0.5 

" Same notation as in Table II. The three groups A, M, and CA sit 
at the corners of a triangle and the C0 at its center, as is illustrated in 
Figure 6. * Distances in A . c Energies in kj/mol. 

chiral centers). Nevertheless, it is interesting to study rigid 
tripodal amphiphiles because of their simplicity. 

In the two-dimensional geometry, there are only two degrees 
of freedom describing the relative rotation of one basal plane 
with respect to the other. We used the Simpson integration 
method, in a way similar to that explained in the previous section. 
Here, the number of integration points is (2JV + I)2, and in our 
calculations, N was varied between JV = 40,60, 80, and even 100 
in some runs. Convergence was always achieved to better than 
10"5. The interaction parameters as well as the various bond 
lengths are tabulated in Table III. 

It is interesting to compare the free energy, internal energy, 
and entropy for the monolayer (Figure 7) with those of the bulk 
(Figure 4). The most apparent difference is the deeper minimum 
in the HOC pair for the free energy in two dimensions (2d's) 
compared with the three dimension (3d) case. At short distances, 
the repelling hard core is stronger for HEC than for HOC in both 
2d and 3d cases, although in the 3d case the discrepancy is bigger. 
The entropy is lower for the entire distance range for the HEC 
case (as in the 3d case), indicating a more frozen state for the 
HEC. On the other hand, the internal energy U2 is lower for the 
HEC (down to distances where the steric hindrance is important) 
so the combination of the two competing terms in the free energy 
results in a non-monotonous behavior as a function of the distance. 

Most of the differences between the 2d and 3d cases can be 
understood in terms of the smaller configuration space available 
in the 2d case. The molecules lock in and repel strongly each 
other at larger distances in the 2d case. As in 3d's, we think that 
it is more instructive to look at the integrand bi(T,R)R (as in eq 
8) of the second virial coefficient as a function of the distance 
R. This is plotted in Figure 8. The two minima in/2

DD and/2
DL 

manifest themselves in the two peaks of the functions in Figure 
8. Integrating the areas under the curves in this figure yields an 
overall chiral discrimination parameter of A2d = 0.088. It is still 
positive, indicating a preference of the HEC case, but it is not 
as large as the 3d case where A3a = 0.43. 

The same conclusion (HEC preference) was reached by 
Andelman and de Gennes13-14 for van der Waals interactions in 
2d's. However, in their model, only nine discrete rotations (back-
to-back) at a fixed intermolecular distance and only the attractive 
tail of the interaction (~l/7?6) have been considered. One of 
our main findings is again that the chiral preference can strongly 
depend on the intermolecular distance. In 2d's, especially, we 
see a strong inversion of the preference (up to about distances of 
6.5 A, it is HOC, whereas above this distance, it is HEC). Finally, 
it is interesting to note that in 2d's the strong dependence of the 

(32) For a review on chiral Langmuir monolayers, see e.g.: Stewart, V. 
M.; Arnett, E. M. In Topics in Stereochemistry; Allinger, N. L., Eliel, E. L., 
Wilen, S. H„ Eds.; Wiley: New York, 1982. 

(33) Wisner, D. A.; Rosario-Jansen, T.; Tsai, M.-D. J. Am. Chem. Soc. 
1986, 108, 8064. 

(34) Bouloussa, O.; Dupeyrat, M. Biochim. Biophys. Acta 1988,938,395. 
(35) Dvolaitzky, M.; Guedeau, M. A. Langmuir 1989, 5, 1200. 
(36) (a) Arnett, E. M.; Harvey, N. G.; Rose, P. L. Langmuir 1988, 4, 

1049; (b) Ace. Chem. Res. 1989, 22, 131. 
(37) (a) Harvey, N. G.; Rose, P. L.; Mirajovsky, D.; Arnett, E. M. J. Am. 

Chem. Soc. 1990,112, 3547. (b) Heath, J. G.; Arnett, E. M. J. Am. Chem. 
Soc. 1992, 114, 4500. 

(38) Stine, K. J.; Uang, J. Y.-J.; Dingman, S. D. J. Am. Chem. Soc, in 
press. 
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Figure 7. Pair free energy, /2> internal energy, Vi and entropy, Si, in A, 
B, and C, respectively. Notations are the same as in Figure 4, but the 
three groups, A, M, and CA, are restricted to lie on a two-dimensional 
plane as is illustrated in Figure 6. Values of the parameters are given 
in Table III. The temperature is 300 K. The horizontal dotted-dashed 
lines denote the values at infinite separation. 

chiral preference on distance is caused less by the steric hard core 
repulsion and more by a different combination of the attractive 
interactions. Hence, both /2

DD and /2
DL have deep minima at 

distances around their respective hard core radii. 

VI. Concluding Remarks 

In this paper, we have studied the chiral discrimination among 
molecules possessing a single chiral center. To do so, we have 
computed the pair free energy, internal energy, and entropy for 
the two enantiomeric pairs, D-D and D-L, as a function of 
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Figure 8. Integrand of the second virial coefficient, b2(T,R)R in 2D, as 
a function of the inter-pair distance R. Notations are the same as in 
Figure 5. This is the adapted second virial coefficient for tripodal 
molecules restricted to rotate in the plane. The chiral discrimination, A, 
is proportional to the difference in the areas under the two curves. Like 
the three-dimension case (Figure 5), in two dimensions the D-L pairs are 
preferred energetically (HEC). 

intermolecular distance. Then, we deduced the second virial 
coefficient for the homo- and heterochiral cases. Our definition 
of the chiral discrimination in terms of the second virial coefficient 
is motivated by the fact that this second virial coefficient enters 
in the low density expansion of the equation of state of the mixture. 

We used a Monte Carlo simulation method to resolve the chiral 
discrimination in alanine molecules with realistic (CHARMM) 
potentials. Although we used very long computer runs, the 
discrimination turned out to be too small to be computed and lies 
within the stochastic errors of the simulations. We observed only 
a very small discrimination (especially at lower temperatures), 
and for short distances. 

On the other hand, we have been able to obtain large chiral 
discriminations for model molecules with sufficiently strong 
asymmetry. This discrimination is obtained with standard two-
body interactions in both two and three dimensions, and at a 
finite temperature, in contrast with previous calculations.12 

One of our main results can be seen in the discrimination of 
the model molecules (Figures 4-8). The free energy (or internal 
energy) difference between D-D and D-L molecules as a function 
of the distance of their centers changes signs in some cases. The 
homochiral case is favored at shorter distances, whereas the 
heterochiral case is favored at larger distances. Simple rules like 

the Wallach's rule39 about the relative stability of racemic 
compounds as compared with their pure enantiomeric counterparts 
should be considered with great care.9'40 As we have shown in 
this paper, the chiral discrimination does not have only a 
geometrical origin (close packing) but stems also from other, 
longer range interactions, leading to a more complicated picture. 

Our findings relying on the so-defined chiral discrimination 
are relevant for problems where chiral discrimination is considered 
in fluid phases (liquid or gas) of racemic mixtures; such is the 
case, for example, of experiments using techniques like gas 
chromotography to find discrimination between dimers of D and 
L enantiomers. Yet another relevant case is chiral discrimination 
in racemic liquid mixtures, and especially in solutions where the 
solvent molecules enter between the D-D and D-L pairs so that 
the discrimination depends on averaging between all possible inter-
pair distances.9-14'20 However, using only the second virial 
coefficient is, probably, not sufficient in the problem of solidi­
fication of racemic mixtures. Whether the mixture will solidify 
into a racemate or a conglomerate is not governed by low density 
effects. Rather, it involves virial coefficients of higher order. 

In order to study the phase diagram of the mixture in a more 
systematic way, it seems that the most convenient method would 
be molecular dynamics or Monte Carlo calculations for an 
ensemble of D and L enantiomers. One could then make an 
extensive study of the phase diagram of the mixture as a function 
of x (the mole fraction of the D enantiomer) and T. Such a study 
is currently in progress. 

Finally, let us note that it would also be interesting to undertake 
such extended studies for realistic models of more complicated 
chiral molecules. Indeed, although the two-body effect might 
again be small, it might still be sufficient to trigger a strongly 
collective effect such as a phase transition (phase separation, 
etc.). 
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references therein. 


